Further reading

    1. Ecology
    Blanca Jimeno, Simon Verhulst
    Research Article

    Glucocorticoid (GC) variation has long been thought to reflect variation in organismal 'stress,' but associations between GCs and Darwinian fitness components are diverse in magnitude, direction, and highly context-dependent. This paradox reveals our poor understanding of the causes of GC variation, contrasting with the detailed knowledge of the functional consequences of GC variation. Amongst an array of effects in many physiological systems, GCs orchestrate energy availability to anticipate and recover from predictable and unpredictable environmental fluctuations and challenges. Although this is mechanistically well-known, the extent to which GC levels are quantitatively explained by energy metabolism is unresolved. We investigated this association through meta-analysis, selecting studies of endotherms in which (1) an experiment was performed that affected metabolic rate and (2) metabolic rate and GC levels were measured simultaneously. We found that an increase in metabolic rate was associated with an increase in GC levels in 20 out of 21 studies (32 out of 35 effect sizes). More importantly, there was a strong positive correlation between the increases in metabolic rate and GCs (p=0.003). This pattern was similar in birds and mammals, and independent of the nature of the experimental treatment. We conclude that metabolic rate is a major driver of GC variation within individuals. Stressors often affect metabolic rate, leading us to question whether GC levels provide information on 'stress' beyond the stressor's effect on metabolic rate.

    1. Ecology
    Stefano Mammola, Martino Adamo ... Ricardo A Correia
    Research Article

    Knowledge of biodiversity is unevenly distributed across the Tree of Life. In the long run, such disparity in awareness unbalances our understanding of life on Earth, influencing policy decisions and the allocation of research and conservation funding. We investigated how humans accumulate knowledge of biodiversity by searching for consistent relationships between scientific (number of publications) and societal (number of views in Wikipedia) interest, and species-level morphological, ecological, and sociocultural factors. Across a random selection of 3019 species spanning 29 Phyla/Divisions, we show that sociocultural factors are the most important correlates of scientific and societal interest in biodiversity, including the fact that a species is useful or harmful to humans, has a common name, and is listed in the International Union for Conservation of Nature Red List. Furthermore, large-bodied, broadly distributed, and taxonomically unique species receive more scientific and societal attention, whereas colorfulness and phylogenetic proximity to humans correlate exclusively with societal attention. These results highlight a favoritism toward limited branches of the Tree of Life, and that scientific and societal priorities in biodiversity research broadly align. This suggests that we may be missing out on key species in our research and conservation agenda simply because they are not on our cultural radar.